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Experimental studies of hot water depressurization show that the pressure in a vessel,
just after it is opened, drops much lower than the pressure of saturation but the
liquid does not boil uniformly throughout the vessel. Essentially, liquid boiling begins
only on the arrival of a ‘slow wave’ of rarefaction which moves at a low speed of
approximately 10 m s−1 from the open end deep into the vessel.

To explain this phenomenon we suggest a model that takes into account the
difference in phase velocities. Although this difference in bubble flows is only about
1 m s−1 it proves to be sufficient to cause bubble breakup. Using this model we
obtained the ‘slow wave of boiling’ in a numerical experiment that was in good
agreement with the physical experiment.

1. Introduction
In a normally working nuclear reactor the hot water is under high pressure. If there

is damage water starts to flow out at a high speed. Owing to the drop of pressure
this efflux is accompanied by boiling. To create a reactor safety system, it is necessary
to understand the properties of such flows, i.e. a model for boiling liquid flows is
necessary that could at least qualitatively explain known experiments. The formation
of a ‘slow wave of boiling’ is one of the major characteristics of such flows. The aim
of our study was to explain this phenomenon.

The ‘slow wave’ was first discovered in the experimental results of Edwards &
O’Brien (1970) by Labuntsov & Avdeev (1981). Edwards & O’Brien studied the
depressurization of a high-pressure vessel, which was a 4 m length tube with 7.3 cm
internal diameter. The tube initially contained hot water with temperature T0 = 515 K.
The pressure in the tube, P0 = 6.9 MPa, was twice the pressure of saturation and
the water did not boil. The right-hand end of the tube was closed with a glass disc.
On destroying the disc the liquid efflux started. As the atmospheric pressure was
less than the pressure of saturation the liquid efflux was accompanied by flashing.
Experimental pressure oscillograms measured at five tube cross-sections are shown
by solid lines in figures 1(a) and 2. At the fourth point the volumetric vapour
fraction was additionally measured by an X-ray absorption system (solid line in
figure 2c).

A uniform pressure of 2.7 MPa, which was less than the pressure of saturation
(3.5 MPa), settled at points 3, 4, 5 almost immediately after the vessel opened (i.e. in
the short time of 3 ms necessary for a wave moving with the speed of sound in a
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Figure 1. Pressure oscillograms at five different tube cross-section locations (shown in the inset):
(a) the experiment of Edwards & O’Brien (1970); (b) calculation with the model of boiling at a
constant number of centres (Nigmatulin & Soplenkov 1980); (c) calculation with the advanced
model accounting for bubble breakup.

pure liquid, ≈ 1000 m s−1, to travel the length of the channel). The pressure remained
constant for a long time: only after 0.2 s did it start to decrease rapidly at the 3rd
point, and then at the 4th and 5th points. This was a ‘slow wave’ of rarefaction
moving with the speed of only 10 m s−1 (figure 1a). The experimental oscillograms of
pressure and volumetric vapour fraction measured at the 4th point clearly showed
that the pressure drop in the ‘slow wave’ was accompanied by a large increase in the
volumetric vapour content (solid lines in figure 2b, c).

An analogous wave configuration had been observed in Edwards & O’Brien’s exper-
iments under different initial parameters. Later it was observed by Isaev (1980) when
investigating the boiling CO2 efflux and by Winters & Merte (1979) in experiments
with dichlorodifluoromethane (R12).
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Figure 2. A comparison of experimental and theoretical oscillograms of pressure for each of the five
tube cross-sections shown in figure 1 and of volumetric vapour content for point 4: —–, experiment;
– – –, equilibrium model; · · ·, model of boiling at a constant number of centres; – ·–, advanced model
accounting for breakup. For a discussion of points A and B see § 6.1.

The known models of liquid boiling cannot explain the ‘slow wave’ phenomenon.

1.1. An equilibrium model

The temperatures, pressures and velocities of the liquid and vapour phases are
considered equal in this model. The equilibrium model includes the equations of
conservation for mixture mass

∂ρ

∂t
+

∂

∂x
[ρu] = 0, (1)

mixture momentum
∂

∂t
[ρu] +

∂

∂x
[ρu2 + P ] = 0, (2)

and mixture entropy

dS

dt
= 0, (3)
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where ρ is the mixture density, u is the flow velocity, P is the pressure, S is the mixture
entropy, and

d( )

dt
=
∂( )

∂t
+ u

∂( )

∂x
is the substantial derivative.

The equilibrium model contains the equation of state for the medium in the
following form:

ρ = ρL(P , S) if P > Ps(T0), (4a)

1

ρ
=

1

ρL
+ ϕ(P )(S − SL) if P 6Ps(T0), (4b)

where Ps is the pressure of saturation. Equation (4b) follows from the condition of
the equality of liquid and vapour thermodynamic potentials of the components of a
boiling mixture.

Here ρL is the liquid density,

ϕ(P ) =

(
∂T

∂P

)
sat

is the derivative of temperature with respect to pressure on the line of saturation, SL
is the liquid entropy.

It follows from the equation of state (4) that at P = Ps(T0), the speed of sound

a2
e =

(
∂P

∂ρ

)
S=const

changes instantaneously from the speed of sound in a pure liquid, 1100 m s−1, down
to the speed of sound in an equilibrium two-phase mixture

1

a2
e

=
ρ2

ρ2
La

2
L

+ ρ

[(
1− ρ

ρL

)
1

ϕ

(
∂2T

∂P 2

)
sat

− ρϕ

ρLT

(
ρL

(
∂iL

∂P

)
sat

− 1

)]
, (5)

which is much less: ae = 26 m s−1 (at 515 K). In (5) aL is the speed of sound in the
liquid, iL is the enthalpy of the liquid.

Therefore the wave of rarefaction is split into two waves moving with different
velocities. The first wave where the pressure drops down to Ps(T0) spreads with
the speed 1100 m s−1. The second wave, where further diminishing of the pressure
occurs, moves with the speed 26 m s−1. These two waves are separated by a zone of
constant pressure Ps(T0). The calculations using the equilibrium model are shown in
figure 2(b, c) by dashed lines. The distribution of pressure at t = 3 ms is shown in
figure 3 by a dashed line. The two parts of the rarefaction wave are seen.

Thus, according to the equilibrium model the pressure behind the first part of
the wave of rarefaction is equal to the pressure of saturation, 3.5 MPa, while in the
experiment it is much less, 2.7 MPa (solid lines in figure 2 and circles in figure 3).

1.2. Models considering thermal non-equilibrium of phases

Experiments show that in the first rarefaction wave the pressure decreases below the
saturation level. Thus, at the first stage of the process the intensity of vaporization is
not enough to compensate the drop in the pressure. Apparently the small interphase
area cannot provide sufficiently intensive boiling. As a result the pressure drops much
lower than the pressure of saturation and the liquid temperature is higher than the
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Figure 3. The stage of fast waves: the pressure distribution along the channel at t = 3 ms. Circles,
experiment; – ·–, calculations under the assumption that the liquid does not boil; – – –, calculations
with the equilibrium model; · · ·, calculations with the model of boiling at a constant number of
centres; —–, calculation with the advanced model accounting for bubble breakup.

temperature on the line of saturation. One of the models accounting for phase non-
equilibrium is the model of boiling at a constant number of nucleation centres of
Nigmatulin & Soplenkov (1980). The model considers the pressures and velocities in
the liquid and vapour phases to be equal, PL = PG = P , uL = uG = u, but temperatures
are considered to be different, TL 6= TG. The parameters in a bubble are assumed
to be uniform and equal to the parameters on the line of saturation. The liquid is
assumed to boil only on admixtured particles existing in it, so the number of bubbles
per unit mixture mass c remains constant (c = const). The number c is the only free
model parameter.

Along with the equations for mixture mass (1) and momentum (2), the model of
Nigmatulin & Soplenkov comprises the equation for internal energy

di

dt
− 1

ρ

dP

dt
= 0, (6)

and the equation of state for the mixture

1

a2
f

dP

dt
=

dρ

dt
+ J, (7)

where i = (1− χ)iL + χiG is the mixture enthalpy, iL, iG are the enthalpies of the liquid
and vapour; χ = ρGε/ρ is the mass vapour fraction; ρG is the vapour density; ε is
the volumetric vapour fraction; af is a ‘frozen’ speed of sound (the expression for it
will be given later);

J = jcρ2

(
1

ρG
− 1

ρL

)
; (8)

c is the number of bubbles per unit mixture mass; j is the mass of liquid evaporating
into one bubble per second. To define j they use a self-similar solution of the problem
of the thermal growth of a bubble in an overheated liquid (Scriven 1959). The use of
this solution is valid if the time for the temperature profile around the bubble to reach
that corresponding to a self-similar solution τT is much less than the characteristic
time of the process.
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Figure 4. Calculation using the model of boiling at a constant number of centres (Nigmatulin &
Soplenkov 1980). Numbers next to the curves in (a) correspond to time in milliseconds.

The self-similar solution gives the link between the dimensionless temperature
gradient at the bubble surface, a Nusselt number

Nu =
2a

TL − Ts
∂T

∂r

∣∣∣∣
r=a

,

and a Jacob number

Ja =
cLρL(TL − Ts)

ρGl
, (9)

where a is the bubble radius; Ts = TG is the temperature of saturation – the
temperature at the bubble surface, Ts = Ts(P ); cL is the specific heat capacity of the
liquid; l is the specific heat of vaporization.

When ρG � ρL, Labuntsov et al. (1964) suggested an approximate formula corre-
sponding to the exact solution of Scriven with an accuracy of 2%:

Nu = 2 +

(
6Ja

π

)1/3

+
12 Ja

π
. (10)

The intensity of liquid evaporation j, expressed via Ja and Nu, has the following
form:

j = 2πDLρGa JaNu, (11)

where DL = λL/(ρLcL) is the coefficient of temperature conductivity of the liquid; λL
is its coefficient of thermal conductivity.

To fit the experimentally measured pressure drop below the saturation one Nig-
matulin & Soplenkov (1980) assumed the free model parameter c = 6× 105 kg−1. In
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fact the free model parameter c can vary for different fluids, and for the same fluid;
it depends on its purity.

The results of their calculations are shown in figure 1(b) and in figures 2 and 4
by dotted lines. The fact that the pressure in the tube remains much higher than
atmospheric pressure for a long time was explained by the effect of the flow ‘choking’.
After opening the vessel a fast wave of rarefaction moves into the channel (figure
4a). Behind the wave the pressure drops below the line of saturation (dashed line)
and liquid starts boiling. Vapour generation causes the expansion of the mixture.
Due to the expansion the velocity of the flow increases along the channel length.
Simultaneously, boiling causes the decrease of the speed of sound. And the velocities
become equal at the tube exit (figure 4b)

u(x = 4 m) = af.

After that the low atmospheric pressure can no longer penetrate into the channel.
The pressure in the tube is stabilized at a level that provides an intensity of boil-
ing sufficient to accelerate the flow up to the speed of sound due to the mixture
expansion.

But the model of Nigmatulin & Soplenkov (1980) does not predict a ‘slow wave’ of
boiling. The calculations (figure 1b) and dotted lines in figure 2 do not show a ‘slow
wave’ in the experiment (solid lines).

Since the complex models could not describe the flows of boiling liquid, Labuntsov
& Avdeev (1981) proposed their own simple model – ‘a concept of shock boiling’.
They postulated that liquid did not boil until the pressure fell to P ∗ which was less
than the pressure of saturation, P ∗ < Ps(TL). Below P ∗, the liquid started to boil,
transforming instantaneously from a metastable liquid to an equilibrium mixture.
This transformation occurred in a shock wave of rarefaction. P ∗ was a free parameter
of their model. Calculations for many flows of boiling liquid with the simple model
coincided well with the experimental data. However, Labuntsov & Avdeev did not
suggest a model of the processes inside a ‘slow wave’ which could be verified in
calculations of the wave structure. Also, the experiment shows that liquid boils before
the slow wave arrives (figure 2c), in contradiction with their model.

2. Physical model of the process
As we have just seen the model of boiling at a constant number of nucleation centres

predicts a more rapid pressure drop than that detected in the experiment. Obviously
additional centres of boiling appear during the efflux in the real flow, intensify phase
transitions and lead to the pressure growth. The boiling non-uniformity made us give
up the hypothesis of uniform birth of additional boiling centres in the flow and we
looked instead for a correlation of the formation of additional boiling centres with
the hydrodynamic parameters of the flow.

The basic idea of the model we suggest is taking into account the possibility of
bubble breakup due to Kelvin–Helmholtz instability of the bubble surface. For bubble
breakup a definite correlation between the bubble dimension and the difference in
phase velocities must occur. The bubble breakup leads to enlargement of the interface
area and boiling intensification. Namely, the bubble breakup takes place in the ‘slow
wave’ and leads to the intensive evaporation in it.

To test this hypothesis we constructed a model to take into account a small
difference in phase velocities along with the thermal non-equilibrium of the mixture.
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3. The model of boiling liquid flow considering bubble breakup

3.1. Assumptions and empirical rules

The model is intended to be applied to fluids below the critical temperature

T 6 0.9Tcr. (12)

The critical temperature for water is Tcr = 647 K. Thus the range of model validity
for water is T 6 590 K. The following assumptions are considered.

(i) Homogeneous nucleation, i.e. the formation of boiling centres where the bonds
between the liquid molecules break, can be neglected for such ‘low’ temperatures. The
theory of homogeneous nucleation proved experimentally by Scripov and co-workers
(Skripov 1972) predicts that the number of bubbles appearing in a unit of volume
per unit time can be expressed by the following formula:

ψ = ψ∗ exp(−Gi) (13)

where ψ∗ in the first approximation is considered to be a constant depending on the
type of liquid (ψ∗ ∼ 1038 m−3 s−1 for water). Gi is the Gibbs number

Gi =
16πσ3

3kTL(Ps − PL)2(1− ρG/ρL)2
. (14)

Here σ is surface tension; k = 1.381 × 10−23 J K−1 is the Boltzmann constant; TL
is the liquid temperature; Ps − PL is the difference in the pressures in the saturated
vapour and in the liquid.

To evaluate the nucleation intensity let us assume the most favourable conditions for
intermolecular bond breakup: the liquid at zero pressure and maximal temperature
satisfying (12). Under these conditions the rate of nucleation given by (13) is the
following:

ψ(TL = 590 K, PL = 0) = 10−6 m−3 s−1.

Thus only 10−9 bubbles could appear due to homogeneous nucleation within
the whole vessel during the time of the process. The probability of intermolecular
bond breakup becomes significant only when the coefficient of surface tension is
approaching zero, i.e. under the liquid parameters near the critical state: T > 0.96Tcr ≈
620 K.

Thus only heterogeneous nucleation is possible under such ‘low’ temperatures (12).
Therefore we assume that the admixed particles are present in the liquid and when
the pressure falls below the saturation value those particles serve as the centres that
nucleate boiling. The number of particles per unit mixture mass c0 is a free model
parameter.

(ii) The characteristic time for the pressure to become uniform within a bubble can
be evaluated by

τPb ∼ a∗/av,
where av ≈ 500 m s−1 is the speed of sound in a heated vapour; a∗ is the typical
bubble radius.

For the known superheats of the liquid and the characteristic time of the process
τ∗, assuming the pressure to be constant, one can evaluate the typical bubble radius
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a∗ from the equation for the bubble mass

dGm

dt
= j, (15)

where m = 4πa3ρG/3. Equation (15) with the help of (11) can be transformed into
the form

aȧ =
DL

2
JaNu.

The superheats being around 15 K for the process under consideration, the Jacob
and Nusselt numbers can be evaluated from (9) and (10) as Ja ≈ 2; Nu ≈ 10.
Assuming that the characteristic time of the process is τ∗ ∼ 0.1 s (which follows
from experiments: figures 1 and 2), one obtains the following estimate for the bubble
radius:

a∗ ∼√DL JaNu τ∗ ∼ 0.1− 1 mm.

Therefore:

τPb ∼ 10−6 � τ∗.
Thus we can consider the pressure within bubbles to be uniform and equal to the

pressure at the fluid–gas interface, i.e. the pressure of saturation:

PG = Psat. (16)

The characteristic time for the temperatures to become uniform over all the bubble
can be evaluated as

τTb ∼ (a∗)2/DG ∼ 1 s,

where

DG =
λG

ρGcG
∼ 10−6 m−2 s−1

is the coefficient of temperature conductivity of vapour.
Though the characteristic time τTb is much larger than the characteristic time of

the process, we nevertheless assume the temperature in a bubble to be uniform:

TG = Ts. (17)

Thus distorting the actual temperature profile in a bubble, we introduce an error
in determining the heat flux from the vapour to the bubble surface

qG = 4πa2λG
∂T

∂r

∣∣∣∣
r=a

.

However the heat flux from vapour to the bubble’s boundary is much less than the
heat flux from the liquid,

qG � qL = 4πa2λL
∂T

∂r

∣∣∣∣
r=a

,

since λG ∼ 0.1λL in our range of temperatures. Therefore the error in the qG definition
does not in practice influence the accuracy of determining the intensity of evaporation
into a bubble. Thus the assumption (17) is quite reasonable and the vapour in the
bubbles can be considered to be in the state of saturation.

(iii) An air bubble can oscillate in fluid for a relatively long time until pressures in
the bubble and surrounding fluid reach an equilibrium. But in the case of intensive
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evaporation it was shown (Nigmatulin 1987) that bubble oscillations decrease rapidly
and in 2 or 3 pulsations pressures in the phases almost reach an equilibrium. The
characteristic time for equalizing the pressures in the phases can be evaluated by

τPP ∼ (2− 3)a∗
√
ρL

P ∗
∼ 10−4 s,

where P ∗ ∼ 1 MPa is the characteristic pressure.
τPP is much less than the characteristic times of the flow. Thus the pressures in the

two phases can be considered equal

PL = PG = P .

(iv) Tables of thermophysical properties of water (Vyckalovitch, Rivkin & Alexan-
drov 1969) show that for temperatures satisfying the condition (12) the following
inequality is valid:

ρG � ρL.

(v) We assume the difference in the velocities of the phases to be much less than
the liquid velocity

|uG − uL| � uL,

where uG is the bubbles velocity, uL is the liquid velocity. This assumption will be
confirmed by numerical modelling.

(vi) We assume that the phase velocity difference variations are much smaller than
the velocity variations ∣∣∣∣∂uG∂x − ∂uL

∂x

∣∣∣∣� ∣∣∣∣∂uL∂x
∣∣∣∣ .

(vii) The equation

ρL(P , TL) =
1

k(TL)− P/[β(TL)]2
(18)

approximates the state of the water near the saturation curve with great accuracy. It
reflects the experimental fact that isotherms for water in a (P–V ) diagram are straight
lines for pressure variations within the range of 100 bar near the saturation pressure.
In (18) β is the coefficient of the isothermic liquid compressibility on the saturation
curve for Ts = TL:

k(TL) =
1

ρLs(TL)
+

Ps(TL)

[β(TL)]2
,

where Ps(TL) is the pressure of saturation at TL; ρLs is the liquid density on the line
of saturation at TL.

In modelling adiabatic flows of boiling liquid like ours, the dependence of liquid
density on its temperature can be neglected because liquid density variations ∆ρL due
to temperature variations ∆TL are much smaller than the mixture density variations
∆ρ due to vapourization caused by thermal energy (cL∆TL) release:

∆ρL(∆TL)� ∆ρ(∆TL).

The mixture density

ρ = ρL(1− ε) + ρGε (19)

characterizes the properties of the two-phase mixture and its major changes are caused
by the variations in volumetric vapour fraction ε.
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Neglecting the dependence of liquid density on temperature, we used the equation
of the liquid state ρL = ρL(P , TL) in the following form:

ρL = ρL(P , T0)

where T0 is the initial temperature of the liquid.
So the equation of state for liquid (18) can be rewritten as

1

ρL
= k − P

β2
, (20)

where

β = β(T0) = const, k = k(T0) = const.

The dependence on pressure in (20) is essential for the initial stage of the process
only when the vapour content is small and the mixture properties depend on the
liquid compressibility.

(viii) The thermophysical properties of water vapour along the saturation line
enable us to introduce the linear approximation

ρG = PG/a
2
G, (21)

within the range of temperatures 4506Ts6 590 K. The approximation parameter in
(21) has the value a2

G = 2× 105 m2 s−2.
(ix) We adopt the breakup model based on the Weber criterion: bubbles do not

breakup while the Weber number We remains less than its critical value We∗, and on
reaching We∗ breakup takes place instantaneously. The radii of the bubbles originated
are defined to ensure that the Weber number remains at the critical value. This is
named the equilibrium breakup scheme:

if We < We∗,
dc

dt
= 0,

if We > We∗, a =
We∗σ

2ρG(uG − u)2
, c =

ε
4
3
πa3ρ

.

 (22)

The expression for the Weber number was taken in the following form:

We =
2aρG(uG − u)2

σ
. (23)

To obtain it Nigmatulin (1987) assumed that the basic mechanisms for the de-
velopment of instabilities on spherical surfaces are the same as for plane interphase
boundaries.

The rise in amplitude of a harmonic perturbation with wavelength λ arising on a
plane interphase boundary is given by the formula (Birkhoff 1960)

δ = δ0 exp[I(λ)t],

where δ0 is the amplitude of the initial perturbation,

I(λ) =

√
4π2ρLρG(uG − uL)2

(ρL + ρG)2λ2
− 8π3σ

(ρL + ρG)λ3
. (24)

It is seen from (24) that I(λ) will be positive (I > 0) when the wavelength of a
harmonic perturbation is greater than the critical value:

λ >
2πσ(ρG + ρL)

(uG − uL)2ρLρG
. (25)
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On the other hand, according to Nigmatulin’s scheme, the length of a wave causing
bubble breakup cannot exceed its diameter:

λ6 2a. (26)

Thus we obtain from (25) and (26) the following inequality:

We =
2a(uG − uL)2

σ

ρLρG

ρG + ρL
> 2π, (27)

showing that the perturbation of a bubble surface occurs when the Weber number
reaches its critical value: We∗ = 2π. Using assumption (iv) (ρG � ρL) we obtain from
(27) the expression for Weber number (23) adopted in our model.

The ranges of validity of the model are as follows. Homogeneous nucleation is
neglected (assumption i); the coefficient of vapour thermal conductivity is considered
to be small in comparison with that of the liquid (assumption ii); the vapour density is
small (assumption iv); the approximations of the thermophysical properties of water
and its vapour presented are suitable only in a quite narrow ranges (assumptions
vii and viii). All these assumptions restrict the temperatures range from above and
assumption (viii) restricts it from below. Thus, for water the model can be used for
temperatures

4506T 6 590 K.

The range of pressures is restricted by the approximations of the thermophysical
properties of water:

16P 6 20 MPa.

3.2. Basic equations of the model

The equations of mass for the liquid and vapour are the following:

∂[ρL(1− ε)]
∂t

+
∂[ρL(1− ε)uL]

∂x
= −jn, (28)

∂[ρGε]

∂t
+
∂[ρGεuG]

∂x
= jn, (29)

where uL and uG are the liquid and vapour velocities; n = cρ is the number of bubbles
per unit mixture volume.

Summing equations (28), (29) we obtain the equation for the mixture mass conser-
vation (1)

∂ρ

∂t
+

∂

∂x
[ρu] = 0, (30)

where ρ is the mixture density (19);

u = uL +
ρGε

ρ
(uG − uL) (31)

is the mean-flow velocity.
Equation (29) can be rewritten in the form

∂[ρGε]

∂t
+

[
u
∂[ρGε]

∂x
+ (uG − u)∂[ρGε]

∂x

]
+ ρGε

[
∂u

∂x
+
∂[uG − u]

∂x

]
= jn. (32)

According to assumptions (v) and (vi) the second terms in square brackets in (32) are
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much smaller than the first ones and can be neglected. Then, the equation for vapour
mass conservation can be finally written as

∂[ρGε]

∂t
+
∂[ρGεu]

∂x
= jn. (33)

The equation for the mixture state (7) can be obtained from (28), (33) and the
equations for the liquid and vapour states: (20), (21)

1

a2
f

dP

dt
=

dρ

dt
+ J, (34)

where af is a ‘frozen’ speed of sound which characterizes the medium compressibility
in the absence of heat and mass exchange between phases

af = 1

/√
ρ(1− ε)
ρLa

2
L

+
ρε

P
, (35)

and

J = jcρ2

(
1

ρG
− 1

ρL

)
; (36)

aL = β/ρL is the speed of sound in liquid.
Since the difference in phase velocities is small (assumption v) we can neglect its

influence on the interphase heat exchange. Then j is determined from the solution of
the problem of the thermal growth of a motionless bubble (Scriven 1959), i.e. using
equations (9)–(11).

The momentum equations for the liquid and vapour accounting for assumption (x)
have the following form:

ρL(1− ε)dLuL
dt

+
∂P

∂x
= −nfΣ − jn(uW − uL), (37)

ρG
4
3
πa3 dGuG

dt
= fΣ + j(uW − uG), (38)

where uW is the average velocity at the interface at which the phase transition occurs,

dL( )

dt
=
∂( )

∂t
+ uL

∂( )

∂x
,

dG( )

dt
=
∂( )

∂t
+ uG

∂( )

∂x
are the derivatives taken along the trajectories of liquid and bubbles; fΣ is the sum
of forces acting on a bubble due to its interaction with the surrounding liquid:

fΣ = fb + fm + fµ,

with buoyancy force

fb = ρL
4
3
πa3 dLuL

dt
, (39)

virtual mass force

fm = f◦m + f′m = ρL
2
3
πa3

[
dLuL

dt
− dGuG

dt

]
+
ρL(uL − uG)

2n

[
dGε

dt
+ ε

∂uG

∂x

]
, (40)
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and drag force

fµ = −ρL cµ
2
πa2|uG − uL|(uG − uL). (41)

The last term f′m on the right-hand side of (40) makes our expression for virtual
mass force fm different from that used by Lahey et al. (1980) and other authors on
bubble flows. We arrived at this expression having solved the problem of single bubble
motion in an infinite volume of incompressible inviscid liquid (Appendix A). This
term characterizes the change in the virtual mass force due to the growth (collapse) of
bubbles. (The growing bubble draws more liquid into motion and is slowed down in
contrast to a collapsing bubble which loses part of its virtual mass and accelerates.)
To take into account viscous effects the interfacial drag force (41) was added to fb
and fm.

The expression for the interfacial drag coefficient cµ is obtained by extrapolating the
cµ-dependences on Reynolds numbers derived by Adamar-Riybchinskii and Moore
(Batchelor 1970) up to their intersection:

cµ =


16

Re
, Re6 10.9

48

Re

(
1− 2.2√

Re

)
, Re > 10.9,

(42)

where the bubble Reynolds number is

Re = 2aρL
|u− uG|

µ
(43)

and µ is the liquid viscosity.
The equation for mixture momentum conservation can be obtained from (37), (38)

and the mass conservation equations for liquid and vapour (28), (29):

∂

∂t
[ρu] +

∂

∂x
[ρu2 + P ] = − ∂

∂x

[
ρLρGε(1− ε)

ρ
(uG − uL)2

]
.

Since phase velocities and their derivatives are similar (assumptions v and vi) the term
on the right-hand side can be neglected and the equation for mixture momentum can
be taken in the form

∂

∂t
[ρu] +

∂

∂x
[ρu2 + P ] = 0. (44)

The momentum equation for vapour can be simplified, too. The order of magnitude
of the term on the left-hand side of equation (38) can be evaluated as

ρG
4
3
πa3 dGuG

dt
∼ ρG4πa3W,

where W is the characteristic acceleration.
The order of magnitude of the first component of fΣ is

fb = ρL
4
3
πa3 dLuL

dt
∼ ρL4a3W.

Since ρG � ρL (assumption iv), the term on the left-hand side of (38) can be
neglected.

The last term in equation (38) represents an additional force caused by the bub-
ble’s mass variation. Using the mass equation (29), it can be transformed into the
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following form:

j(uW − uG) =
uW − uL

n

[
dG(ρGε)

dt
+ ρGε

∂uG

∂x

]
. (45)

It can be compared with the last term in the expression for the virtual mass force
(40) representing the additional force caused by the bubble’s virtual mass variation:

f′m =
uL − uG

2n

ρL

ρG

[
dG(ρGε)

dt
+ ρGε

∂uG

∂x

]
− uL − uG

2n

ρL

ρG
ε

dρG
dt

. (46)

The expressions in the square brackets in (45) and (46) are the same, but the
coefficient in front of the brackets in (46) is much larger than that in (45):

|uW − uG|
n

� |uL − uG|
2n

ρL

ρG
,

because ρG � ρL (assumption iv) and |uW − uG| < |uL − uG|. Thus, the force caused
by the bubble’s mass variation is much less than the force caused by its virtual mass
variation for the present flow:

j(uW − uG)� f′m.

Therefore, neglecting the last term on the right-hand side of (38) the equation for
bubble motion will take the form

fb + fm + fµ = 0. (47)

Using assumption (v) the derivatives along the trajectories of the liquid and bubbles in
equations (39), (40) can be replaced by the derivatives along the mean-flow trajectory.

Since the vapour density is much smaller than that of the liquid, ρG � ρL (as-
sumption iv) and the difference in phase velocities is much smaller than the liquid
velocity (assumption v) the mean-flow velocity (31) can be considered equal to the
liquid velocity for our flow:

u = uL. (48)

Following (48) the liquid velocity in (39), (40) can be replaced by the mean-flow
velocity. Then the equation for bubble motion (47) can be rewritten as

d

dt
[ε(uG − u)] = 2ε

du

dt
− 3cµ|uG − u|

4a
[ε(uG − u)]. (49)

Energy conservation equation. We have adopted assumption (iii) that all vapour pa-
rameters are equal to those on the line of saturation; therefore vapour enthalpy iG can
always be determined from the pressure in the mixture, iG = iG(P ). Thus there is no
necessity to use the differential equation of vapour energy conservation. Therefore our
model contains only one energy equation: the equation for conservation of thermal
energy of the mixture in the following form:

ρ
di

dt
− dP

dt
= −n(uG − uL)fΣ − ∂

∂x

[
ρLρGε(1− ε)

ρ
(uG − uL)(iG − iL)

]
. (50)

The first term on the right-hand side is the work done by the forces of interfacial
interaction. Assumptions (iv), (v) and (vi) allow us to drop the right-hand side of (50),
and it then takes the form

di

dt
− 1

ρ

dP

dt
= 0. (51)
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Thus we have derived a closed set of equations containing the equation for mixture
mass (30), momentum (44), energy (51), the equation of state for the mixture (34), the
equation for bubble motion (49), and the breakup model (22). The present form of
the set combines both the equations for the mixture as a whole and the equations for
one of the phases. The advantage of such a form is that in the limiting cases it gives
the equations for the simpler models.

The interfacial drag does not allow bubbles of small radii to get over the threshold
for breakup, and the phase velocity difference does not influence the flow parameters.
Under these conditions the flow can be described by equations (30), (44), (51), and (34)
that do not contain terms reflecting the mechanical non-equilibrium of the mixture
and are exactly the same as the equations of the model of boiling at a constant
number of nucleation centres (Nigmatulin & Soplenkov 1980).

For flows with a relatively large specific interface area and slow pressure variations
the phases stay in thermal equilibrium, TL = TG as well: changes in pressure give
rise to an intensive heat exchange between phases, rapidly bringing the mixture to
equilibrium. The equation of state for the mixture takes the form (4), and equation
(34) serves only to determine the intensity of evaporation J . The energy equation (51)
for the equilibrium mixture is equivalent to the equation (3) for the entropy.

The possibility of reducing the present model to an equilibrium one allows us to
expand the limits of its applicability under certain conditions. For example, the model
can be used not only for the modelling of the bubble flows with the vapour volumetric
fraction

06 ε6 0.3,

but also for modelling the equilibrium flows with 0.36 ε6 1.

4. A short note on the numerical method
A numerical method that excluded pulsations was used to solve this problem. The

‘slow wave’ is a zone with large gradients of parameters. If one calculates such a
flow using the usual methods numerical pulsations occur in place of the wave, and in
these, as a rule, negative pressures arise terminating further calculations. To supress
numerical pulsations ‘pseudoviscosity’ is usually introduced in the system of equations.
But it is impossible to define a coefficient of pseudoviscosity that permits the ‘right’
picture of the flow to be obtained. With small coefficients the wave, as before, looks
like pulsating structure while with large values it can disappear altogether. (The
necessary condition for the existence of the ‘slow wave’ of boiling is the presence
of large gradients. By reducing these gradients pseudoviscosity distorts the physical
picture of the flow.)

We have developed a method that prevents the onset of numerical pulsations in
the calculations (see Appendix B) so that introducing pseudoviscosity is no longer
necessary. Only one regulatory parameter remains: the integration step ∆x. Now we
can obtain a numerical solution with any necessary degree of accuracy: we reduce ∆x
until the solution obtained differs from the previous one by a certain chosen value.
Therefore we can be sure that the numerical solution obtained corresponds to our
system of equations.

5. Free parameters of the model
The free parameters of our model are the number of admixtured particles c0 and

the critical value of the Weber number We∗. For the first computation (figure 5, dotted
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Figure 5. The adjustment of the free model parameters. The oscillograms of the pressure (a)
and volumetric vapour content (b) at the cross-section x = 1.5 m from the closed tube end: —–,
experiment; · · ·, c0 = 3× 105 kg−1 and We∗ = 6; – ·–, c0 = 2× 105 kg−1 and We∗ = 1.

line) We∗ was taken from Nigmatulin’s evaluation We∗ = 2π ≈ 6; c0 was chosen as
c0 = 3×105 kg−1) to obtain in the calculations the same pressure level (2.7 MPa) as in
the experiment (solid line). The numerical results obtained qualitatively correspond to
the experimental ones: the pressure level (2.7 MPa) remains constant for a long time
and then suddenly drops; the decrease of pressure is accompanied by the increase
in the volumetric vapour content. Thus the ‘slow wave’ of rarefaction was obtained
in the numerical experiments but its velocity was a little less than in the physical
experiment.

To achieve a better agreement we decreased the value of We∗ and the speed of the
‘slow wave’ propagation increased. But to maintain the same level of the pressure we
had to decrease the number of initial boiling centres at the same time. The results
for We∗ = 1 and c0 = 2× 105 kg−1 are shown by dot-dashed lines in figure 5. Under
these initial parameters a better agreement with the experiment was achieved. All the
further calculations were carried out using these values of the initial parameters.

Thus varying the free parameters of the model, we obtained good agreement
between the ‘slow wave’ velocity, and the pressures in front of and behind it, and the
experimental data. However, while the theoretical and experimental curves coincided
in general, the calculated width of the wave was much smaller than that measured in
the experiment. The probable reason was the roughness of the ‘equilibrium’ scheme
used for bubble breakup (22). The model described adequately the parameters of
the initial and final states of the mixture in the ‘slow wave’, but gave only a rough
estimate for the processes inside it.

Up to now the lack of detailed information on the dynamics of bubble interface
instability growth has prevented us from developing a more detailed inertial scheme
for bubble breakup. Our model in its present form could be used to describe large-
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scale flows with characteristic length scales much larger than the width of the ‘slow
wave’.

6. Theoretical results and analysis
6.1. Comparison of experimental and theoretical oscillograms

at different tube cross-sections

A ‘slow wave’ is clearly seen in figure 1(c) where the pressure oscillograms at different
tube cross-sections are set out together. Experimental and calculated oscillograms
for each of these cross-sections separately are compared in figure 2. It is seen that
calculations using the model considering breakup (dash-dot line) correspond with the
experiment (solid line) better than those using the model of boiling at a constant
number of centres (dotted line) and the equilibrium model (dashed line). The times
of arrival of the ‘slow wave’ are marked A in these oscillograms. On reaching the
closed tube end the ‘slow wave’ is reflected. As a result of the reflection the usual
acoustic wave of rarefaction arises which quickly passes through the channel in the
opposite direction (from the closed tube end to the exit). The times when it reaches the
different cross-sections are marked B. When the second wave of rarefaction reaches
the open end the process of efflux is practically finished: all the tube is occupied by
a motionless foam (equilibrium media) with a volumetric vapour content ε ≈ 1.

We see that our model reproduces correctly the main features of the ‘slow wave’
of rarefaction found experimentally: before its arrival the pressure remains constant
for a long time (figure 1); after its arrival the volumetric vapour fraction rapidly
increases (figure 2c). Now analysing the model and calculations we can establish the
mechanism of the ‘slow wave’. It is formed a few milliseconds after depressurization
at the stage of fast waves.

6.2. The primary stage of depressurization

At time zero the pressure at the right-hand end of the 4 m length tube instantaneously
drops to atmospheric, 0.1 MPa, and the wave of rarefaction goes deep into the channel
with the speed of 1100 m s−1. The distributions of parameters along the tube 1, 2 and
3 ms after the vessel is opened are shown in figure 6(a). After the arrival of the fast
wave of rarefaction the pressure drops below the pressure of saturation and the liquid
starts to boil at the existing boiling centres. The boiling causes the expansion of the
mixture and thus the flow velocity u behind the wave increases along the channel.
Simultaneously, boiling causes the decrease of the speed of sound. And the regime
of ‘choking’ characterized by the equality of velocities of the flow and sound at the
exit

u(x = 4 m) = af

is reached quickly in the channel (figure 6b). In this regime the low atmospheric
pressure can no longer penetrate into the channel. The pressure behind the wave is
set at the level of 2–2.5 MPa which is less than the pressure of saturation, 3.5 MPa.
Also, the ‘choking’ of the flow leads to the establishing of a large pressure gradient
at the exit. The sizes of bubbles are also maximal here. Therefore the Weber number
reaches its critical value at the channel exit first. Bubble breakup begins there (figure
6c) and the ‘slow wave’ is being formed.

Our model predicts a higher pressure near the exit than that predicted by the model
with no breakup (figure 3). Our prediction corresponds better to the experiment (circles
in figure 3).
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Figure 6. The propagation of the first wave of rarefaction through the channel. (a) The pressure
distribution along the channel after 1, 2 and 3 ms. (b, c) The distribution of other parameters at
t = 1 ms.

At t = 3.6 ms the fast wave of rarefaction reaches the closed tube end and is
reflected from it. A reflected wave of rarefaction forms, moving away from the closed
end (figure 7). It propagates through the boiling mixture with the pressure 2.5 MPa.
The pressure behind the wave is much less, ≈ 1 MPa. The temperature of saturation
corresponding to this pressure is Ts ≈ 450 K (the overheats are ≈ 60 K). Such
enormous overheats cause intensive liquid boiling. The volumetric vapour fraction
near the closed tube end increases quickly (figure 7b). Since the mixture pressed
against the closed tube end has no possibility of expanding, the increase in volumetric
vapour fraction causes a pressure increase. As a result, the reflected wave damps
quickly and by time t = 10 ms (figure 8) a uniform pressure distribution is settled
along the whole channel except for a small zone near its exit where the ‘slow wave’
had formed by that time.

Then the main stage of the efflux process begins. The picture of the flow is very
simple (figure 9a): a ‘slow wave’ of rarefaction with velocity ≈ 10 m s−1 moves through
the zone of nearly constant pressure.
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Figure 8. The end of the stage of fast waves: the damping of the reflected wave. The pressure
distribution at three times, shown in milliseconds.

6.3. The main stage of efflux

The parameter distributions along the channel 0.1, 0.2 and 0.3 s after the depressur-
ization are shown in figure 9. Three zones are clearly distinguished in the flow: a
non-equilibrium zone, where the liquid and vapour temperatures differ; a ‘slow wave’
which is a relatively thin moving zone where, nevertheless, most of the vapour is
generated and the non-equilibrium mixture is transformed into an equilibrium one;
and an equilibrium boiling zone. Let us consider these zones separately.

(i) The non-equilibrium zone is located between the closed tube end and the front
of the ‘slow wave’ (figure 9a). Liquid boils only at initial centres in this zone (figure
9h). The pressure gradients are very small and the pressure appears constant but,
nevertheless, the mixture moves. This movement is caused by non-equilibrium boiling.
Since the pressure is less than the pressure of saturation the bubbles are growing and
the mixture expands. The expanding mixture is pushed away from the closed tube end.
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Since the concentration of boiling centres and the liquid overheats are uniform along
the zone the intensity of mixture expansion is also uniform. Therefore the mixture
velocity along the zone increases by a linear law (figure 9b) from 0 to umax ≈ 10 m s−1.
The mixture accelerates: in the time taken for a particle to pass through this first
zone τ1 ∼ L1/umax ∼ 0.1 s its velocity increases to umax. Thus the acceleration is

du

dt
∼ umax

τ1

∼ 100 m s−2.

To create such an acceleration the pressure difference between the ends of the first
zone must be only ∼ 0.1 MPa. Since the pressure level in this zone is ≈ 3 MPa such
a small change can hardly be distinguished in figure 9(a).

However, the flow acceleration in the first zone is 10 times greater than the
gravitational acceleration. The bubbles move faster than the surrounding liquid in
accelerated flows, and the acceleration of 100 m s−2 proves to be sufficient to increase
the phase velocity difference up to ∼ 1 m s−1 (figure 9d). For such a difference the
Weber number (for a 1 mm bubble) reaches its critical value (figure 9e) and the bubble
surface loses its stability. The cross-section where the Weber number becomes critical
is the boundary of the first zone.

Thus, in the first zone the mixture is being prepared for bubble breakup. The
processes in this zone determine the velocity of its boundary (the velocity of the
‘slow wave’). From the other side, the level of pressure in this zone is defined by the
processes taking place in the other zones.
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(ii) The second zone contains the ‘slow wave’ of rarefaction, i.e. a moving zone of
sharp parameter changes. Although it is only 1

100
of the total channel length, most of

the liquid is evaporated in this zone. The volumetric vapour content increases from
≈ 0.2 to 0.8 (figure 9g). The mixture in the zone is converted into an equilibrium
state: liquid and vapour temperatures become equal TL = TG (figure 9f). Such an
intensification of boiling is possible due to the great increase in the interphase area
caused by bubble breakup. The number of bubbles in this zone increases by 6 orders
of magnitude (figure 9h).

(iii) The third, equilibrium, zone is located between the ‘slow wave’ and the open
end. Calculations show that liquid and vapour temperatures are equal, TL = TG, in
this zone (figure 9f). The mechanical properties of such a medium are similar to those
of gas but with a more complex equation of state (4).

6.4. The mechanism of the ‘slow wave’

Let us analyse the mechanism that permits practically instantaneous evaporation of
such a great quantity of liquid.

The numerical calculations showed that the width of the ‘slow wave’ is small and
does not increase in time. That allows us to suppose that the ‘slow wave’ can be
described by stationary equations in the coordinate system linked with the wave. To
test this hypothesis we consider the stationary version of our model:

G = ρv = const, (52)

R = Gv + P = const, (53)

I = i+
v2

2
= const, (54)

∂v

∂y
=
cjρ(1/ρG − 1/ρL)

1− v2/a2
f

, (55)

∂

∂y
[ε∆v] = 2ε

∂v

∂y
− 3cµ|∆v|

4av
[ε∆v], (56)

where y is the distance from the cross-section at which breakup begins, v is the flow
velocity in the moving system, and ∆v = uG − u is the difference in phase velocities.

All the parameters at y = 0 but the velocity v were taken from the numerical
experiment: P = 2.7 MPa, ε = 0.2, T = 513 K, We = We∗. The velocity v was varied
to see if the solution of a ‘shock wave’ type could be obtained. This type of solution is
characterized by a rapid change of parameters in a narrow zone and relatively small
change outside the zone:

∂v

∂y
→ 0, y →∞.

The results show (figure 10) that among the integral curves there were such
solutions (OA and OB). In those regimes the mixture reached the equilibrium state
(TG = TL, j = 0) and the velocity reached the steady value. In a P–V (pressure–specific
volume) coordinate system the states A, B form a segment of the conventional
Hugoniot curve with energy release (figure 10b) well known from the theory of
combustion. The regimes of OC type for which the flow velocity reached the ‘frozen’
speed of sound af could not take place in a ‘slow’ wave.

In our numerical calculations regime OB appeared because it was a self-sustaining
one: the flow velocity behind the wave was equal to the speed of sound in an



Slow waves of boiling under hot water depressurization 171

2

150

0

(a)

(c)
lo

g 10
(c

)

P
 (

M
Pa

)
Ps(T0)

T
L
, T

G
 (

K
)

50

0

14

10

(d )100

C B

O

v,
 a

f,
 a

e 
(m

 s
–1

)

6

0 0.1 0.2

y (m)

4

500

480

(e )
A

B

A

C

TL

TG

O

2 4 6 8 10

Dimensionless
volume, v/vL0

10
A

B

14.8253

14.825414.8260
20

A
(b)

B

O

af B

A

A

B

ae

C

O
v

0.1 0.2 0.10 0.2

2

P
 (

M
Pa

)

0
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equilibrium medium:

y →∞, v = ae (57)

and flow disturbances from the exit could not overtake the ‘slow wave’ and influence
its propagation regime (see figure 9c paying attention to the fact that v = u + D,
where D is the velocity of the wave).

Thus, the slow wave was proved to be a shock-type wave and stationary equations
allowed its mechanism to be determined.

The mechanism of the ‘slow wave’ is the following. At the starting point of the wave
(y = 0) the Weber number reaches its critical value and the bubbles begin to break
up. Due to breakup the interphase area increases and boiling intensifies. The speed
of the flow increases (since c is in the numerator of (55)). The increase in velocity
gradient ∂v/∂y causes an increase in the difference in phase velocities ∆v (see (56)).
The increase in ∆v is why the Weber number does not decrease after breakup in spite
of the diminishing of bubble radius and so breakup is repeated. Thus, it proceeds like
a chain reaction, i.e. one breakup creates the conditions for the next one. That leads
to the great increase in bubble number. The breakup process comes to an end when
the mixture reaches an equilibrium state (TL = TG). Then j → 0, ∂v/∂y → 0 and the
chain reaction is switched off.



172 O. E. Ivashnyov, M. N. Ivashneva and N. N. Smirnov

2

520

0

(a)

P
 (

M
Pa

)

Ps(T0)

T
L
, T

G
 (

K
)

480

460

500

0.1 0.2

x (m)

4

0.1
0.18

TL

TG

0.198

0.1920.202

(b)

0.3 0.4

0.190

0.15

Figure 11. Detonation. (a) The absorption of the heated layer by a ‘slow wave’. (b) Conversion of
a ‘slow wave’ into the ‘detonation’ wave. Numbers in the plot show the time in seconds.

Thus the bubble breakup is the trigger mechanism for the release of the thermal
energy of a superheated liquid and its transformation into the kinetic energy of the
flow.

7. ‘Detonation’ in fast flows of boiling liquid
It has been shown that the ‘slow wave’ of boiling is a self-sustaining wave where

the thermal energy of a superheated liquid is transformed into the kinetic energy of
fluid–vapour mixture. Thus it has much in common with the deflagration wave in
combustion theory where the chemical energy of the metastable combustible mixture is
transformed into kinetic energy of the expanding reaction products. It is a rarefaction
wave too.

The theory of waves with energy release shows that combustion processes can take
place not only in the form of deflagration but also in the form of detonation waves
(Smirnov & Zverev 1992). The detonation wave can propagate in a self-sustaining
mode as well and represents a stationary structure containing a shock wave followed
by a deflagration one. In general the detonation wave is compressive.

Therefore it is reasonable to expect the existence of a ‘fast wave of boiling’ of
compression type propagating with a supersonic velocity. To obtain this wave in the
numerical experiment we changed slightly the initial conditions of the problem. We
assumed a thin 10 cm length layer in the centre of the channel to be heated up to
525 K, 10 K higher than the liquid temperature in the rest of the tube. The calculations
showed that the existence of the hot layer practically did not influence the stage of
fast waves and ‘slow wave’ formation. But at t = 0.2 s when the ‘slow wave’ came in
contact with the hot layer (figure 11a) the pressure at their point of contact increased



Slow waves of boiling under hot water depressurization 173

and a compression wave arose. Moving deep into the channel with a sufficiently great
speed D = 200 m s−1 the compression wave caused bubble breakup and the mixture
conversion into an equilibrium state. As a result of the ‘heat explosion’ the pressure
in the channel doubled.

Along with the ‘fast boiling wave’ of detonation type moving through the metastable
medium a shock wave of retonation type was originated, travelling in the opposite
direction towards the exit (figure 11b). This wave degenerated very quickly. The
process taken as a whole had much in common with the well known deflagration to
detonation transition processes (Smirnov & Zverev 1992)

The possibility of the transition of the ‘slow waves of boiling’ into the deto-
nation mode could be the reason for the high-frequency oscillations observed in
non-equilibrium flows of boiling liquid. In fact, any strong disturbance of such flows
can intensify the bubble breakup and lead to the formation of a ‘fast boiling wave’ of
detonation type. This wave converts the thermal energy of a superheated fluid into
potential energy of the compressed equilibrium mixture, i.e. increasing the pressure.
Some of the energy of the wave can be consumed by construction elements (pipelines,
dampers, constrictions, etc.) and then partially returned back to the non-equilibrium
flow after the induction delay of the structural response. On being returned to the flow
it can cause a new strong disturbance resulting in the formation of a new ‘detonation
boiling wave’. Thus a regime with strong pulsations can be established.

8. Summary and conclusions
1. A model for unsteady processes in boiling liquid was suggested. Using this model

the ‘slow waves’ of boiling appearing in high-pressure-vessel depressurization were
explained. We showed that in a ‘slow wave’ a chain reaction of bubble breakup
took place. It caused a sharp increase in the interphase area which led to a sharp
intensification of the vaporization process. Thus the non-equilibrium mixture was
practically instantaneously transformed into an equilibrium one.

2. It was proved that both ‘slow waves of boiling’ of deflagration type and ‘quick
waves of boiling’ of detonation type were possible in the non-equilibrium boiling
flows. Those waves were shown to propagate in a self-sustaining regime, insensitive
to flow disturbances behind the wave.

The following qualitative (energy-based) picture can help to understand the factors
causing the origination of these waves in a non-equilibrium boiling mixture. Since the
liquid temperature is higher than that of saturation, the liquid in a non-equilibrium
mixture is a source of thermal energy. But the small interphase area does not allow
the liquid to lose its thermal energy quickly. A sharp increase of the interphase area
due to the chain process of bubble breakup makes the liquid lose its thermal energy
practically instantaneously. This energy is transformed in the ‘slow wave of boiling’
into the kinetic energy of the flow. The ‘fast wave of boiling’ of detonation type
transforms the thermal energy into the potential energy of the compressed two-phase
mixture.

3. The possibility of strong pulsations due to the periodical formation of the ‘fast
boiling waves’ of detonation type should be taken into account when constructing
devices wherein the non-equilibrium flows of boiling liquid can take place.

The Russian Foundation for Basic Research (Grant 99-03-32042) and INTAS
(Grant 97-2027) are acknowledged for financial support.
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Appendix A. The solution of the problem of bubble movement
A.1. Physical statement of the problem

Let a bubble move in an infinite volume of inviscid (µ = 0) incompressible (ρL =const)
liquid. The direction of the bubble velocity uG coincides with the direction of the
liquid velocity at infinity uL∞. The velocities uG, uL∞ and the bubble radius change in
time:

uG = uG(t), uL∞ = uL∞(t), a = a(t).

Let us determine the force acting on the bubble.

A.2. Mathematical statement of the problem

The flow of inviscid incompressible liquid is described by a Laplace equation that has
the following form for axisymmetrical flows:

∂

∂r

(
r2 ∂ϕ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
= 0, (A 1)

where r and θ are the polar radius and angle of a spherical coordinate system with
its centre at the bubble centre; ϕ is the potential of the liquid flow,

∇(ϕ) = v(r, θ, t), (A 2)

where v is the liquid velocity.
The boundary conditions. The liquid velocity at infinity is

r →∞, ∇(ϕ) = iuL∞, (A 3)

where i = εr cos(θ) − εθ sin(θ) is a unit vector of the axis 0x the direction of which
coincides with the direction of bubble movement, vectors i, uL∞, uG are collinear; εr, εθ
are the unit vectors of the spherical coordinate system.

The boundary condition on the bubble surface is a slip condition, that is the
normal projections of liquid velocity v · εr = ∂ϕ/∂r and the bubble surface velocity
of (uGi + ȧεr) · εr are equal:

r = a, ∂ϕ/∂r = uG cos(θ) + ȧ. (A 4)

A.3. Solution

We found the problem solution in the form of a sum of standard solutions of the
Laplace equation (A 1): the potential of a straight-line flow and the potentials of the
source and dipole with their centres at the centre of the bubble. The free parameters
of these standard solutions are chosen to satisfy the boundary conditions (A 3) and
(A 4). The final formula for the potential has the following form:

ϕ = uL∞r cos(θ)− (uG − uL∞)a3

2r2
cos(θ)− ȧa2

r
. (A 5)

The liquid velocity can be determined from (A 5) using (A 2). To determine the
pressure distribution we use the momentum equation in the form of a Bernoulli
integral:

Pa = Π(t)− ρL
[(

∂ϕ

∂t

)
a

+
v2
a

2

]
, (A 6)

where Pa,
(
∂ϕ/∂t

)
a
, and va are the parameters on the bubble surface; Π(t) is a function

of time only and therefore it does not affect the force we are looking for.
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The partial derivative of ϕ with respect to time in (A 6) is written in the motionless
coordinate system, while in the coordinate system moving with the bubble the partial
derivative (∂ϕ/∂t)G has the form(

∂ϕ

∂t

)
G

=
∂ϕ

∂t
+ v · (uG i). (A 7)

Thus equation (A 6) in the moving coordinate system has the form

Pa = Π(t)− ρL
[(

∂ϕ

∂t

)
r=a

− va · (uG i) +
v2
a

2

]
.

Integrating the pressure over the bubble surface

f = fb + fm = −2πa2

∫ π

0

Pa cos(θ) sin(θ)dθ,

we obtain the force

f = ρL
4πa3

3

duL∞
dt
− ρL 2πa3

3

d(uG − uL∞)

dt
− ρL

2
(uG − uL∞)

d

dt

(
4πa3

3

)
. (A 8)

Then it can be proved that the mean liquid velocity in the vicinity of the bubble uL
is equal to uL∞. To adapt the formula (A 8) for multiphase flows we should substitute
uL for uL∞.

The radii of bubbles in our flow can change not only due to their growth or collapse
but also due to breakup. The breaking process was not taken into account in (A 8)
but it is possible in our flow. The formula (A 8) predicts the acceleration of breaking
bubbles since the radii diminish. However, it is in contradiction with the physical
reality as the total volume of bubbles and, consequently, the total virtual mass does
not change under the breaking process. Thus the breakup shoud not lead to bubble
acceleration. Formula (A 8) should be modified for those types of flows.

Equation (A 8) could be modified for flows without breakup by subtracting from
the right-hand side the equation for the number of bubbles:

1

n

(
∂n

∂t
+ uG

∂n

∂x

)
+
∂uG

∂x
= 0 (A 9)

multiplied by 2πa3ρL(uG − uL)/3. Here n is the number of bubbles per unit mixture
volume:

n =
ε

4
3
πa3

.

Modifying (A 8) one obtains the following formula for the mean force per volume
unit:

nf = ρLε
duL
dt
− ρL

2
ε

d(uG − uL)

dt
− ρL

2
(uG − uL)

dε

dt
− ρL

2
ε(uG − uL)

∂uG

∂x
. (A 10)

We assume that (A 10) is also valid for the case of bubble breakup since it does
not contain parameters that change under the breakup conditions (n or a). Therefore,
no additional forces emerge due to breakup, and breaking bubbles do not accelerate.

Appendix B. The numerical method
Consider a simple medium where there exists an analytical solution of the problem

of wave propagation. Then it is possible to evaluate the degree of accuracy of the
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solutions given by different numerical methods by comparing the numerical results
with the exact analytical solution.

The equation of state of the medium is

1

ρ
=

1

ρ0

− P − P0

β2
, (B 1)

where β = const, and ρ0, P0 are the density and the pressure in an undisturbed
medium.

Introduce dimensionless parameters P , u . . . .

P = P/P ∗, u = u/u∗,

where P ∗, u∗. . . are the characteristic values.
Taking the width of the initial disturbance l∗ as a characteristic length, the charac-

teristic pressure P ∗ = P0, the characteristic velocity, density and time are

u∗ =
P0

β
, ρ∗ =

P0

(u∗)2
, τ∗ =

l∗

u∗
.

In a Lagrangian coordinate system dimensionless equations of conservation for mass
and momentum and the equation of state are

∂

∂t

[
1

ρ

]
= a

∂u

∂x
, (B 2)

∂u

∂t
+ a

∂P

∂x
= 0, (B 3)

1

ρ
= 1 + a− P , (B 4)

where x = x/l∗ is the dimensionless Lagrangian coordinate, and a = β2/(ρ0P0) is the
dimensionless speed of sound.

The system (B 2)–(B 4) has a well known solution of ‘progressive wave’ type. The
initial profiles of waves move along the characteristics

ξ = x± at = const

without changing their shape:

P (ξ) = const, u(ξ) = const.

Now consider the problem of the wave propagation numerically using the most
popular Lax–Wendroff method. Let the width of the wave be l∗ = 1, and the pressure
in it change from P = 1 down to 0.1 (figure 12).

For (B 2), the two-step numerical Lax–Wendroff scheme (figure 12a) becomes[
1

ρ

]i+1/2

j−1/2

=
1

2

([
1

ρ

]i
j−1

+

[
1

ρ

]i
j

)
+
a

2

∆t

∆x
(u ij − u ij−1),

[
1

ρ

]i+1

j

=

[
1

ρ

]i
j

+
a∆t

∆x

(
u
i+1/2

j+1/2 − u i+1/2

j−1/2

)
.
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Figure 12. (a) The Lax–Wendroff scheme. (b) According to the analytical solution (—–) the wave’s
shape must not change in the course of time (in the linked coordinate system). Using this analytical
solution as initial parameter distributions in a time unit we have obtained a numerical solution
(– ·–). In this calculation the wave’s front was divided into 10 cells.

An analogous numerical scheme can be written for (B 3). The integration steps in
time and coordinate satisfy the Courant criterion

C =
a

∆x0/∆t
6 1,

where the Courant number C is the ratio of the physical velocity of information
spreading and the velocity found using the scheme. We chose C = 0.5, divided the
front of the wave into 10 cells and added 100 cells from the left and from the right
of the wave where according to the analytical solution the parameters should not
change. We added one cell on the right boundary and withdrew one cell from the left
boundary within each two steps so that the wave should stay in the same place.

The numerical solution proved to differ from the analytical one. In the numerical
solution there were ‘pulsations’ which increased in time (figure 12). Their amplitude
was the higher the steeper the wave.

Introducing the pseudoviscosity diffuses the wave and greatly changes the structure
of the zone of large gradients. Thus it is unacceptable for modelling the structure
of the ‘slow boiling wave’ as the internal chain process of bubble breakup is the
governing process for the whole problem.

To develop a new method satisfying our requirements of being non-oscillatory and
preserving the structure of the zones of large gradients we use the physical approach
presenting the system of equations (B 2)–(B 4) in the characteristic form where each
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Figure 14. (a) The scheme ‘double triangle’. (b) The results of the calculations of the wave structure
obtained with this scheme: —–, analytical solution; – · –, numerical solution for 10 cells within the
zone of the wave; · · ·, numerical solutions for 100 cells within the zone of the wave.

equation contains an invariant preserved along the characteristic line:

∂I1

∂t
+ a

∂I1

∂x
= 0, (B 5)

∂I2

∂t
− a∂I2

∂x
= 0, (B 6)

where I1 = P + u; I2 = P − u are the invariants. The characteristic directions are
given by the equations

dx

dt
= a;

dx

dt
= −a.
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Superposition of these two invariants gives us the solution of the problem. Equa-
tions (B 5) and (B 6) are independent from each other: (B 5) describes the propagation
of perturbations moving from left to right, (B 6) those in the opposite direction. We
use these characteristic features of the system to construct the numerical scheme. We
know that scheme ‘triangle’ (figure 13) is free from the pulsations. And we apply the
scheme ‘left triangle’ for (B 5) and ‘right triangle’ for (B 6):

(I1)
i+1
j = (I1)

i
j +

a∆t

∆x

[
(I1)

i
j−1 − (I1)

i
j

]
,

(I2)
i+1
j = (I2)

i
j +

a∆t

∆x

[
(I1)

i
j+1 − (I2)

i
j

]
.

 (B 7)

On substituting the expressions for the invariants into (B 7) the formulas for P and
u can be obtained:

P
i+1

j = P
i

j +
a∆t

2∆x

(
u ij−1 − u ij+1

)
+
a∆t

2∆x

(
P

i

j−1 − 2P
i

j + P
i

j+1

)
,

u i+1
j = u i+j

a∆t

2∆x

(
P

i

j−1 − P i

j+1

)
+
a∆t

2∆x

(
u ij−1 − 2u ij + u ij+1

)
.

 (B 8)

We solved our problem of progressive wave propagation with the help of this
numerical scheme (‘double triangle’). We chose the same Courant number C = 0.5 to
compare the results. It is seen (figure 14) that though the numerical solution differs
from the analytical one the distortions no longer have the character of ‘pulsations’.
The degree of distortion was considerably decreased when the front of the wave was
divided into a greater number of cells (figure 14b).

We applied the same approach to the solution of the main problem. The governing
system of equations was rewritten in the characteristic form and the scheme ‘triangle’
was applied for each of the characteristic equations. That allowed us to get rid of
numerical pulsations in this case as well, and the use of pseudoviscosity was no longer
necessary. Thus the numerical method allowed one to approach the exact solution
with the required accuracy merely by decreasing the step of integration ∆x.
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